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A thin liquid layer flowing down an inclined plane exhibits a long-wave interfacial 
instability a t  a critical value of the Reynolds number. Past work on this problem has 
shown that heating or cooling the layer does not significantly change the 
characteristics of this instability. We show that this is not correct when the Prandtl 
number of the liquid is large and that both heating and cooling from below can 
destabilize the layer depending on the interfacial heat-transfer conditions. The 
mechanism for this unstable behaviour involves the direct expansion of the liquid as 
it experiences a temperature perturbation produced by the deformation of the 
interface. When the layer is heated from below, this additional effect changes the 
critical angle a t  which longitudinal, buoyancy-driven rolls are preferred relative to  
the long-wave interfacial instability. 

1. Introduction 
A thin liquid layer flowing down a rigid inclined plane is an appropriate model for 

a large number of technologically important processes. The theoretical work of 
Benjamin (1957) and Yih (1963) clearly showed that the interface of an isothermal 
inclined liquid layer is unstable to long-wavelength disturbances if the Reynolds 
number is large enough. The research on this instability and its behaviour in many 
related systems has since become quite extensive. 

Since thin liquid layers are seen in a large number of cooling and condensation 
processes, a natural extension of this work is to include the effects of heat and mass 
transfer on the instability of the layer. The thermal effects of condensation have been 
examined by Bankoff (1971), Marschall & Lee (1973), Lin (1975) and Unsal & 
Thomas (1978) through a modification of the normal-stress boundary condition a t  
the interface. In  a layer heated from below, Roca (1966) included buoyancy normal 
to the layer. Lin (1975) and Sreenivasan & Lin (1978) added the effects of a 
temperature-dependent surface tension, but neglected buoyancy completely. Kelly 
& Goussis (1982) considered buoyancy in both the normal and the longitudinal 
directions. Finally, the effect of a temperature-dependent viscosity was considered 
by Goussis & Kelly ( 1  985). 

In  this paper, we shall consider the effect of heating or cooling the layer on the 
stability of the interface to long waves. We shall include buoyancy forces in both the 
longitudinal and the normal directions and also the full effect of liquid expansion. 
When Kelly & Goussis (1982) considered this problem, they showed that buoyancy 
forces and direct liquid expansion could be neglected within the layer when the 
thermal expansion coefficient is small. Since this is usually the case, they concluded 
that thermal effects do not significantly influence the characteristics of the long-wave 
instability in inclined layers. We shall show, however, that this result is only strictly 
true for a liquid layer with small to moderate values of the Prandtl number. 
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Heating or cooling an inclined liquid layer will significantly alter the onset of the 
interfacial long-wave instability when the Prandtl number of the liquid layer is large 
enough, The mechanism for this unstable behaviour is the direct expansion of the 
liquid. When the interface of the layer is deformed, advective motions in the liquid 
produce a temperature perturbation that causes the liquid to expand or contract in 
a way that increases the interfacial deformation. This temperature perturbation is 
proportional to the Prandtl number, and so as the Prandtl number increases its 
influence on the onset of the instability becomes larger. 

The importance of thermal effects on the long-wave instability can be seen in two 
ways. First, when a layer has a nearly insulated interface and is cooled from below, 
it is actually less stable to long-wave disturbances than either an isothermal or a 
heated layer. Secondly, heating the layer from below will alter the critical angle of 
inclination a t  which longitudinal, buoyancy-driven rolls are preferred compared to 
transverse interfacial long waves. Both of these behaviours shall be documented in 
this work. 

In $2, we shall define the model of a film flow down an inclined plane that is cooled 
or heated from below. The essential results of the long-wave stability calculation are 
then presented in $3. Numerical calculations for finite wavelengths are given in $4. 
These results demonstrate that a disturbance with a zero or a very small wavenumber 
is the preferred mode of long-wave instability. We then describe in $5 the physical 
mechanisms involved in the instability and show how they are supported by the 
mathematical analysis. Finally, in $6, we state our conclusions and comment on 
related work. 

2. Mathematical analysis 
The inclined liquid layer model is shown in figure 1. It is composed of a liquid layer 

of thickness d bounded below by a rigid plane and above by a passive gas. The rigid 
plane is inclined a t  the angle p with respect to the horizontal and gravity acts 
vertically downward. The bottom surface of the layer is maintained a t  the 
temperature Tt  while the top surface undergoes convective heat transfer to the 
passive gas, which is held a t  the ambient temperature T,*. For purposes of scaling, 
the as yet unknown temperature of the top surface is TF. The liquid is a Newtonian 
fluid in which the density is the only temperature-dependent material property. The 
density p* has the equation of state p* = pb(l -y(T* -T,*)), where pb is the density 
at the temperature TZ and y is the thermal expansion coefficient. The other fluid 
properties are the viscosity p ,  kinematic viscosity v = p / p b ,  thermal conductivity k, 
specific heat c p ,  thermal diffusivity K = k / ( p ,  c p ) ,  surface heat-transfer coefficient h,, 
and surface tension u. We use a coordinate system that has its origin embedded in 
the rigid plane with the x-axis parallel to the plane and the y-axis normal to it. The 
velocity, length, time and pressure are scaled with Us = g sin (p) d 2 / v ,  d ,  d / U s  and 
pUJd respectively. The temperature is referred to the temperature of the bottom 
surface Tg and scaled with AT = TF-T:. The dimensionless governing equations 
and boundary conditions for two-dimensional flow are given as follows : 

pR{u, + UU, + VU,} = -p ,  + p  + V'U, 

~ R { v ,  + UV, + V V ~ }  = -p ,  - cot (p) p + V'V, 

( 2 . 1 ~ )  

(2.1 b)  

pPe(T,+uT,+vT,) = V2T, (2 . lc )  

Pt+UPz+vP,+P(Uz+V,) = 0, ( 2 . 1 4  
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FIGURE 1. The geometry of a liquid layer on a rigid inclined plane. The layer is heated or cooled 
from below. The top surface is stress-free and undergoes convective heat transfer to the bounding 
ambient gas. 

p = 1-ET,  

u = v = T = O  on y=O,  

Here. 

T, is the dimensionless temperature of the ambient passive gas, X is the curvature 
of the interface, Sij is the Kronecker delta, and lower-case letter subscripts refer to 
partial differentiation, except for i and j which are indices used in a standard indicia1 
notation. Note that we do not assume that the liquid is incompressible and so we use 
the full form of the mass conservation equation. 

The dimensionless groups that appear in these equations are the Reynolds number 
R = g sin (p) d3/u2, the PBclet number Pe = gsin (p) d 3 / v ~ ,  the expansion number E = 
y AT, the capillary number Ca = pb g sin (p) dZ/cr, and the Biot number B = h,d /k .  
Note that Pe = RPr ,  where Pr = u / K  is the Prandtl number. 

The expansion number E is generally very small and so the Boussinesq 
approximation is usually employed to simplify the above equations. In  this 
approximation, we would ignore all O(E)  terms except for the gravitational body- 
force terms in the momentum equations ( 2 . l a ,  b ) .  However, the scaling of this 
problem shows that even these terms can be ignored if temperature effects are O( 1 ) .  
Thus, the temperature field decouples from the velocity field and we regain the result 
of Kelly & Goussis (1982) that thermal effects do not influence the long-wave 
instability of the layer. In  the present work, we wish to show how thermal effects can 
influence the instability and so we do not make the Boussinesq approximation. Our 
results show that some O(E)  terms are multiplied by the Prandtl number and they 
become important if the Prandtl number is large. To simplify the presentation of the 
following analysis, small O(E)  terms are neglected, as noted, and only those terms 
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that  produce an O(EPr) effect are retained. A final result that includes all of the 
neglected terms up to O(E2) is also reported. 

The basic state is a simple parallel shear flow, defined as 

All O(E)  terms in this basic state are small compared with one and can be neglected. 
If we consider the dimensional ambient temperature fixed, then equation (2.2g) 
determines the dimcnsional temperature of the top surface T: used in the scaling 
analysis. 

Next, we perform a standard linear stability analysis and solve the resulting 
disturbance equations using normal modes defined as 

(u’, w‘,p’, T, p’, 7’) = (&, 6,$, P,b ,  $1 exp {ia(z-ct)>. (2.3) 

Here, a is the wavenumber of the disturbance, c is a complex eigenvalue whose real 
part, c,., is the phase speed, and whose imaginary part times a, aci, is the growth rate 
of the instability. Using 6 = - E?, the final normal-mode disturbance equations are 

(2.4a) pR{ia(a- c) .li + ~’8) = - ia$ - EP+ D2& - a2&, 

iapR(U-c)8 = -D2;+Ecot(p)?+D28-a28, (2.4b) 

( 2 . 4 ~ )  

(2.4d) 

& = & = ? = O  on y = 0, (2.4e) 

1 (2 .4h,  i) 

Here, Di  = di/dyi for j = 1 , 2  and primes on the basic-state quantities also denote 
differentiation with respect to y. 

These normal-mode disturbance equations are examined for long waves using a 
regular perturbation expansion for a+O. This technique was first used by Yih (1963) 
for the isothermal problem. The appropriate long-wave expansions are 

( 2 . 5 ~ :  b) 
2; = po+apl+a2p2+ . . . ,  P = T,+aTl+a2T,+ . . . ,  (2.5c, d) 

pPe{ia(a-c) ?+ T v ~ )  = D ~ P - ~ z ? ,  
- E(ia(a-c) !f’+ PV”} +p(iorZi + D8) = 0, 

(2.4f 1 
on y =  1. (2.4g) 

-$ + 2DG = p‘$ - Ca-’a2$ 

D.li + i0l.F = - @”$ 

6 = ia(%(l)-c)$,  D P + M  = - B P ~  

4 = uo + au, + a2u2 + . . . , 8 = awl + a2v2 + . . . , 

$ = T/+)+aq,+a2q2+ ...) c = c0+ac,+a2c2+ .... (2 .5e ,  f 

We shall use the normalization qo = 1, vj  = 0 , j  = 1 , 2 , 3 . .  . . 

problems and their solutions. At O(1) we have 
Implementing the regular perturbation method, we obtain the following ordered 

D2T, = 0, T,(O) = 0, DTo(l) +BT,(l) = -B,  (2.6a, b, c) 

D2u0 = ETo, ~ ~ ( 0 )  = 0, Du0(l)  = 1 -E, ( 2 . 6 4  e , f )  

Dpo =Ecot (p)T, ,  po(l) = cot(P)(l-E). (2.6g, h) 
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All O(E) terms in these equations are small compared with one and so they can be 
safely ignored. The solutions are 

T,(Y) = -aY> UO(Y) = Y, Po@) = cot (P) ,  ( 2 . 7 ~ ~  b, c) 

where 93 = B/(B+ 1). 
At O(a)  we have 

Dw, = -iu,+Ep-'{i(a-c0) T,+pv,}, (2.8a) 

v,(O) = 0, co = ti(l)+iw,(l), (2.86, c) 

D2T, = pPe{i(ti-co)T,+T"v,}, (2.8d) 

T , ( O )  = 0, DT,(l) +BT'( 1) = 0, (2.8e,f)  

(2.89) D2u, = ipo +ET, +pR{i(a-c,) uo +a'vl}, 

~ ~ ( 0 )  = 0, Du,(l) = 0. (2.8 h, i) 

In  the solution of these equations, we can ignore all O(E) terms except for the ET, 
term in (2.8g) because is of O(Pr)  and we wish to retain terms of O(E Pr). This O(E) 
term represents the effect of buoyancy in the longitudinal direction that is 
introduced through the advection of heat described by (2.84. The solutions for these 
equations are 

vl(y) = -i&Y", co = 1, (2.9a, b)  

T,(y)=iPe -- Y 4 + Y + g  (Y5 ---+--- Y4 Y3 5Y) +g2- IQO;} { 24 6 40 12 6 12 
( 2 . 9 ~ )  

ul(y) = iR ---+- +icot(p) --y {L $ ;} {: } 
+---+- Y5 5Y3 43Y) +g'2 (11Y3 "Y)} 

1680 360 120 72 240 360 120 ' 

(2.9d) Finally, a t  O(a2)  we have 

Dw, = -iu,+Ep-l{i(ti-c0) T,-ic, T , + T ' w , } ,  (2.104 
v2(0)  = 0, c1 = iw2(l). (2.10 b, c) 

When O(E)  terms are ignored in this differential equation, but terms of O(EPr) 
retained, ( 2 . 1 0 ~ )  becomes 

The solution is 
Dv, = -iu,+Ei(ti-co)T,. (2 .104 

17 73 

When ci is positive, the system is unstable. Setting ci = 0 and using the relation 
Pe = R Pr,  we obtain the critical Reynolds number 

(2 .124  
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For an insulated top surface (-W = 0) 

R, = 8 cot (p) { 1 + & E P r } ' ,  

and for an isothermal top surface (-W = 1 )  

R, = 5 cot (p) { 1 - & E Pr )' . 

(2.12b) 

(2.12c) 

When E = 0, we regain the result obtained by Benjamin (1957) and Yih (1963) for 
an isothermal layer when the difference in the velocity scale is considered. 

We neglected the small O(E) terms in the above analysis in order to emphasize our 
main result concerning the importance of O(EPr)  terms. When these terms are 
included, wc obtain 

( 2 . 1 3 ~ )  

17 73 

(2.13 6 )  
1207 - - ~ 3 ) ] }  19 + 0 p 3 ) .  

1080 
+Pe --+- w+-  ( 4::2 :::lo 67200 

( 2 . 1 3 ~ )  

(2.13d) 

From this, the critical Reynolds number is 

R, = :cot (P)f?Z/fd? 

where 

(2.13e) 

The simpler results in (2.9b), (2 . l lb )  and ( 2 . 1 2 ~ )  can be recovered from the results 
shown in (2.13) by retaining the O(E Pr)  terms and neglecting all other O(E) terms. 
This result verifies the correctness of the simpler analysis. 

3. Long-wave results 
When Pr = 0 ( 1 ) ,  the critical Reynolds number, from (2.13c), is 

R, = g cot (p) + O(E). (3.1) 

This clearly shows that thermal effects produce only small changes in the critical 
Reynolds number compared to the isothermal value. This is the result of Kelly & 
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FIQURE 2.  The behaviour of the critical Reynolds number R, for long waves versus the 
polynomial function 2, defined by (3.2). 

X 

Goussis (1982). However, when E Pr = O( l ) ,  thermal effects have a pronounced effect 
on the critical Reynolds number as shown in ( 2 . 1 2 ~ ) .  Rewriting ( 2 . 1 2 ~ )  as 

R, = % ~ o t ( / ? ) ( l + x ) - ~ ,  ( 3 . 2 ~ )  

( 3 . 2 b )  

we see that the critical Reynolds number behaves as shown in figure 2.For negative 
values of x, R, increases as x decreases, showing that the layer is stabilized by the 
thermal conditions. For x < - 1, the layer is completely stabilized to long waves. For 
positive values of x, R, monotonically decreases as x increases. Thus, the layer is 
destabilized by the thermal conditions. 

The sign of x determines the behaviour of the liquid layer to thermal effects. 
Positive values of E indicate a layer cooled from below, while negative values are for 
a layer heated from below. We also note that the polynomial expressed as x 
monotonically decreases with 99 for a E (0 , l ) .  When %9 = 0 (insulating), x = 
EPT 17/168, and when 98 = 1 (isothermal), x = -E Pr 11/384. The crossover point is 
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FIMJRE 3. The value of E P r  at which complete stabilization of the interface to  long waves 

occurs versus the  parameter ~'49. 

g = 0.562, which is the Biot number B = 1.28. Thus, the layer behaves as follows. 
When the top surface is approximately isothermal (B > 1.28), heating destabilizes 
the layer and cooling stabilizes it. This is the behaviour consistent with our 
understanding of Rayleigh-Be'nard convection in a horizontal layer. However, when 
the top surface is approximately insulating (B < 1.28), cooling destabilizes the layer 
and heating stabilizes it. This is unexpected and indicates an instability mechanism 
somewhat different from previous experience. 

Figure 2 (a )  shows that enough heating or cooling can completely stabilize a liquid 
layer to long waves with zero wavenumber. This occurs when x < - 1,  from which we 
produce figure 3. The inequality corresponds to the regions in the upper right and 
lower left corners of the figure. This figure shows that a layer with an approximately 
isothermal top surface (0.562 < @ < 1) is completely stabilized to long waves for a 
large enough cooling fsom below. In a layer with an approximately insulating top 
surface (0 < g < 0.562), a large enough heating from below will completely stabilize 
the layer to long waves. The extremal points of these curves are EPr = 34.91 for an 
isothermal top surface (B = l ) ,  and EPr = -9.882 for an insulated top surface 
(37 = 0). 

When the liquid layer is on a vertical surface, (2.11 b )  reduces to  

where x is given by (3 .2b) .  The vertical layer is stable if x < - 1. Thus, figure 3 also 
gives the critical value of heating or cooling (depending on the thermal conditions of 
the top surface) for complete stabilization of a vertical layer to long waves. 

We can isolate the thermal effects seen in the long-wave instability by noting that 
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as Pr+ co, R+O. In  this limit, the fluid flow in the layer is completely viscous, but 
an instability still exists since Pe approaches a constant. We find 

EPe, = 2Ocot(p) (3.4) 

An isothermal upper surface (B  = 1) yields E Pe, = -cot (p) 960/11. This indicates 
that the instability occurs when the layer is heated from below. For an insulated 
upper surface (W = 0), we obtain EPe, = cot (p)420/17. Thus, unstable long waves 
are possible when the layer is cooled from below. 

4. Finite-wavelength results 
The long-wavelength, surface-wave instability of an inclined, isothermal liquid 

layer occurs a t  a critical wavenumber of a = 0. This has been confirmed by DeBruin 
(1974) and Floryan, Davis & Kelly (1987) who showed numerically that the neutral 
curve corresponding to the interfacial mode has a global minimum in Reynolds 
number a t  a = 0. They also showed that the shear mode of instability associated with 
this flow occurs a t  a higher value of the Reynolds number except when the angle of 
inclination is extremely small, i.e. less than half a minute of arc. Thus, the interfacial 
long-wave instability is preferred for all but the smallest inclination angles. 

In  the stability analysis of the previous section, we showed that it is possible for 
the liquid layer to be completely stabilized to long waves under specific sets of 
thermal conditions. Under these conditions, i t  is possible that the critical value of the 
Reynolds number for surface waves occurs a t  a non-zero value of the wavenumber. 
To determine if this is so, we solved the normal-mode stability equations (2.4) 
numerically using SUPORT, a code written by Scott & Watts (1975, 1977). This code 
uses Runge-Kutta integration and a superposition technique to solve two-point 
boundary-value problems. Orthonormalization is employed to accurately calculate 
the solution when the problem is stiff. Iteration routines using the secant method 
were written by the author to perform the iteration on the eigenvalue and to find the 
neutral point. Successful checks of the numerical solution with the numerical results 
of Floryan et al. (1987), with the long-wave approximations given by (2.13), and with 
the results of the associated adjoint eigenvalue problem provided confidence that the 
equations were correctly coded and solved. 

The neutral curves of Reynolds number versus wavenumber are functions of Ca, 
p, B, E and Pr. The capillary number represents the effect of surface tension that 
tends to stabilize the interface. For long waves, its effect is negligible as shown by the 
fact that this parameter does not appear in the long-wave results of the previous 
section. Thus, we shall set the surface tension to zero, i.e. Ca-' = 0, in the numerical 
calculations. The cotangent of the angle of inclination p has a scalar effect on the 
critical Reynolds number for long waves. For simplicity, we set /3 = 45" in our 
computations. 

Our ultimate goal in this work is to explore the effect of the Prandtl number on the 
interfacial instability subject to specific thermal conditions in the layer. So, we shall 
consider a cooled liquid layer with the expansion number E = lop3 and a heated layer 
with E = - and 
for an insulated surface, B = 0. 

The numerical calculation of a point on a neutral curve for large values of the 

For an isothermal top surface, we set the Biot number B = 
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FIGURE 4. Neutral curves of the  Reynolds number R versus the wavenumber a for different values 
of the Prandtl number Pr.  The system is stable below the curves and unstable above. The layer is 
cooled from below and has a n  isothermal top surface. Other parameter values are E = B = 
a, Ca = a and p = 45'. The neutral curve for the isothermal case E = 0 is also shown, but  it is 
indistinguishable from the curve for Pr = 1 because they differ by only an O ( E )  amount. 

Prandtl number and 'large' enough values of the wavenumber fails owing to either 
orthonormalization problems or because i t  is extremely time consuming. However, 
figures 4, 5, 7 and 8 show that the neutral curves for large values of the Prandtl 
number become indistinguishable on this scale from the neutral curve for Pr = 1 well 
before the failure in the calculation occurs. For example, the calculation for Pr = 
3 x lo6 in figure 4 was stopped because of time a t  a = 0.005. Thus, even though we 
could not calculate the complete neutral curve up to a = 1 or higher for the larger 
values of the Prandtl number, we feel that  all of these neutral curves are actually 
indistinguishable from the Pr = 1 neutral curve for 'large ' values of the wavenumber 
as suggested by the figures. 

We can verify this supposition for a layer with an isothermal top surface by noting 
that a good approximation to the temperature field in the limit of Pr+ co can be 
found by solving the energy equation ( 2 . 4 ~ ) .  The result is 

F = - PG/ia(a-c), (4.1) 

which also satisfies the boundary conditions a t  the top and the bottom surfaces. This 
temperature field is then used in the solution of the momentum and continuity 
equations to obtain a neutral curve for the large-Prandtl-number limit. This 
approximate neutral curve should be accurate for the larger values of the 
wavenumber and i t  is relatively easy to compute all the way to a = 1 .  It differs from 
the neutral curve for Pr = 1 by only an O ( E )  amount and so the two curves are 
indistinguishable in figures 4 and 5. All the neutral curves for large Prandtl numbers 
in the two layers with an isothermal top surface merge with this curve as a becomes 
' large '. 
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Pr 1.0 x lo2 2.0 x lo2 1.0 x lo3 3.0 x lo3 3.0 x 10' 3.0 x lo5 3.0 x lo6 
R, 2.5108 2.5170 2.5124 2.5086 2.5051 2.5039 2.5036 
a, 0.000 0.0 18 0.023 0.017 0.010 0.006 0.003 

TABLE 1 .  The critical Reynolds number R, and the critical wavenumber a, for various values of the 
Prandtl number Pr corresponding to figure 4. The layer is cooled from below and has an isothermal 
top surface. Other parameter values are E = B = m ,  Cu = co and p =  45'. 

The neutral curves for a cooled layer with an isothermal surface (E  = lop3 and 
B = co) are shown in figure 4 for various values of the Prandtl number. First, for 
Pr = 1 we see that the system has a preferred long-wave instability because the 
neutral curve has a minimum a t  a = 0 and monotonically increases as a increases. 
We also see that the neutral curve for the isothermal layer is indistinguishable from 
the Pr = 1 neutral curve because the two differ by only an O ( E )  amount. As the 
Prandtl number is increased, the long-wave stabilization is clearly evident. For this 
value of E ,  the complete long-wave stabilization occurs for Pr > 35000. This is shown 
in the two curves for Pr = 3 x lo5 and 3 x lo6. For these two curves, we find that R 
behaves like a-1 as a+O. The critical points of these neutral curves are shown in 
table 1. Here we see that the critical Reynolds numbers differ from the isothermal 
value of 2.5 by only an O(E) amount. Thus, the onset of instability in this case is 
essentially governed by the isothermal layer. 

and 
B = 00)  are shown in figure 5. The destabilizing effect of heating is clearly evident. 
Thus, the long-wave results of the previous section do predict the critical value of the 
Reynolds number for heating. Note that the thermal effects are confined to 
wavenumbers of less than The region of influence of these thermal effects can 
be clearly seen by considering the limit of Pr + co, in which Re + 0 and Re Pr = Pe, 
approaches a constant. The neutral curves for this limit and for three values of E are 
shown in figure 6. When plotted as -EPe versus -a /E  all the neutral curves 
collapse onto the single curve shown in the figure. Since the expansion number is 
generally small, we see that the region of influence of the thermal effects on the long- 
wave instability is confined to wavenumbers of O(E). This extreme localization was 
also seen for the case of cooling. Note that in this limit of Pr = 00, the neutral curves 
represent an instability due to thermal effects alone. Inertial effects, which cause the 
instability of the isothermal liquid layer, are completely negligible. 

Now, consider a layer with an insulating top surface. The neutral curves for cooling 
( E  = 10- and B = 0) are shown in figure 7. Here we see the long-wave destabilization 
predicted by our perturbation analysis. The extent of the influence of the thermal 
effects is the same as for the heated layer with an isothermal top surface, as shown 
in figure 5. However, the neutral curves behave very differently near R = 2.5. For the 
heated layer, the lower part of the neutral curve representing the thermal mode is 
smoothly connected to  the upper part of the curve representing the inertial mode for 
all finite values of Pr that we examined. When Pr = co, we see only a single curve 
for the thermal mode as shown in figure 6. In  figure 7,  when Pr is large enough, we 
see two distinct branches of the neutral curve ; a lower branch for the thermal mode 
and an upper branch for the inertial mode. For Pr just above 3 x lo5, the two 
branches merge to form one continuous curve. 

The neutral curves for a heated layer with an insulating top surface (E = - lop3 
and B = 0) are shown in figure 8. The long-wave stabilization we predicted is evident 
in the curve for Pr = 8000. When Pr = 8 x lo4, there is no long-wave instability; 

The neutral curves for a heated layer with an isothermal surface (E  = - 

12 FLM 219 



FIGURE 5 .  Neutral curves of the Reynolds number R versus the wavenumber a for different values 
of the Prandtl number Pr.  The system is stable below the curves and unstable above. The layer is 
heated from below and has an  isothermal top surface. Other parameter values are E = - 
B = co. Ca = co and p = 45'. 

FIGURE 6. Neutral curves of - E Pe versus - a / E  in the infinite-Prandtl-number limit for three 
values of the expansion number, E = - - and - The system is stable outside the 
region bounded by the curve and the vertical axis and unstable inside. The layer is heated from 
below and has an isothermal top surface. Other parameter values are B = a, Cu = a and p =  4.5'. 
All three curves are indistinguishable on this plot. 
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FIQURE 8. Neutral curves of the Reynolds number R versus the wavenumber a for different values 
of the Prandtl number Pr. The system is stable below the curves and unstable above. The layer is 
heated from below and has an insulated top surface. Other parameter values are E = - B = 
0, Ca = co and /? = 45". 
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FIGURE 9. The value of the critical Reynolds number R,  versus the Prandtl number Pr for the 
neutral curves of figure 8. The layer is heated from below and has an insulated top surface. Other 
parameter values are E = - B = 0, Cu = 00 and /3 = 4 5 O .  
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again as predicted in the analysis of $2. However, the behaviour of the critical point 
of these neutral curves i s  markedly different than those of the cooled layer with an 
isothermal top surface shown in figure 4. In figure 4, the critical points are contained 
near and above the neutral curve for the isothermal case. In  figure 8, the critical 
point moves below the isothermal neutral curve as Pr gets large. The critical 
Reynolds number and the critical wavenumber as a function of Pr are shown in 
figures 9 and 10 respectively. These curves start a t  Pr = 50, because for Pr < 50 the 
critical point lies a t  a = 0. As Pr gets large, R, - Pr-' and the critical wavenumber 
approaches a constant value. 

The results of this section are summarized as follows. The critical points for a 
heated layer with an isothermal top surface and a cooled layer with an insulating top 
surface occur at a =  0. The critical Reynolds number can be calculated from 
( 2 . 1 3 ~ )  up to  O(E2). For a cooled layer with an isothermal top surface, the instability 
has a finite, but small, wavelength. The critical Reynolds number is always near the 
value for an isothermal layer. When the layer is heated with an insulating top 
surface, the instability also has a small but finite wavelength, as shown in figure 10. 
However, the critical Reynolds number decreases from its isothermal value as the 
Prandtl number increases (figure 9). 

5. Discussion 
Our results show that thermal conditions can influence the stability of an inclined 

liquid layer to long waves. When IE Pr[ > 4, heating or cooling the layer changes the 
critical Reynolds number by 10% or more for any value of the Biot number. Using 
a typical value for the expansion coefficient y = lop3 OC-' and a AT = 4 "C, this 
threshold corresponds to Pr > 1000. Thus, only fluids with large Prandtl numbers 
exhibit this effect. Goussis & Kelly (1982) argued that all O(E)  terms are negligible 
when E is small. Their arguments are valid for moderate and small values of the 
Prandtl number, but they fail when the Prandtl number is large because they 
neglected the effect of the Prandtl number on the temperature distribution in the 
layer. 

When an inclined liquid layer is heated from below, it can become unstable to both 
long waves and to Rayleigh-Be'nard convection. It is best to relate these two 
instabilities by considering the Rayleigh number, defined as Ra = -gd3ydT /v~ ,  
where Ra is positive for heating from below. Noting the relation 

Ra = -RE Pr/sin (p), 
equation ( 2 . 1 2 ~ )  for the layer with an isothermal top surface becomes 

(5.1) 

Kelly & Goussis (1982) found that the preferred mode of thermal convection on a 
rigid inclined plane takes the form of longitudinal rolls and so the critical Rayleigh 
number is 

as found by Kirchgassner (1962). Here, Ra, = 1100 is the critical Rayleigh number 
for a horizontal layer with a free isothermal upper surface and a rigid isothermal 
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lower surfacc (Chandrasekhar 1961), and the cos (p) in the denominator reflects the 
dccrcasc in the normal component of gravity as the inclination angle of the rigid 
plate is increased. This result does not depend on the parameters EYr because this 
is a steady mode of convection and i t  is easy to show that the critical Rayleigh 
number is independent of the Prandtl number. 

Comparing these two results, we find that the critical Rayleigh number for the 
long-wave instability is less than that of the convective instability when the angle of 
inclination of the plate is greater than a transition angle p1 given by 

tan2 ( P I )  = -- E:{ I -&EPr} ' .  (5.3) 

Thus, long waves are seen first when p > p1 and longitudinal rolls are seen first when 
,4 < pL. Note that (5.3) reduces to the result of Kelly & Goussis (1982) when EPr is 
small. As an example, consider the silicone oil AK350 and a temperature differential 
across the layer of 5 "C. Long waves appear first when ,4 > 9.7". If thermal effects on 
the long-wave instability were ignored, we would predict long waves for /3 > 12.1". 

Thermal effects in a heated or cooled inclined liquid layer influence the behaviour 
of thc long-wave instability in two different ways. The first way is to induce 
longitudinal buoyancy forces that drive additional motion in the layer. The second 
is through direct expansion of the liquid. Thc process through which these thermal 
effects influence the instability can be understood in terms of an extension to the 
physical mechanism for the long-wave instability of an inclined isothermal liquid 
layer given by Smith (1990). The first two terms of c, given in (2.116) represent the 
net effects of this isothermal instability mechanism. The first term measures the 
destabilizing effect of inertia in response to a disturbance of the viscous flow in the 
layer. The cot (/I) term represents the stabilizing effect of the hydrostatic pressure in 
the layer. 

To describe the instability mechanism due to thermal effects, consider a long-wave 
disturbance to the interface of an inclined liquid layer that is cooled from below, as 
shown in figure 11.  (The arguments for the case of a layer heated from below are 
similar.) In  the cooled layer, the basic-state temperature increases linearly upward. 
When the position of the interface is deflected upwards by a disturbance, the basic- 
state temperature a t  the new location is larger than a t  the undisturbed location (see 
figure 11 a) .  If the interface is isothermal, a negative temperature perturbation must 
develop there that balances the increase in temperature due to the basic state. Thus, 
a cold spot develops a t  the disturbance crest. Likewise, a t  a depression of the 
interface, a hot spot develops in order to maintain the temperature of the interface 
a t  a constant temperature. This effect is readily seen in the thermal boundary 
condition at the free surface (2.4i) when B+ 00. The leading-order disturbance 
temperature field that results is shown in figure 1 1  (6). It is linear because i t  is 
dominated by heat conduction normal to the layer. 

The next correction to the temperature field is of O(a)  and is governed by (2.8d).  
We see that heat advection modifies the conduction temperature field in two ways. 
The dominant one is the advection of the leading-order temperature disturbance by 
the basic-state velocity relative to the moving disturbance. Because the phase speed 
of the disturbance is positive and larger than the basic-state velocity a t  any point 
within the layer, the horizontal motion of the fluid with respect to the disturbance 
will always be in the upstream direction. In  figure 12(a),  we see that to the left of a 
disturbance crest, the horizontal motion of the fluid advects cooler fluid particles 
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FIQURE 11. The development of the leading-order temperature perturbation in a liquid layer with 
an isothermal top surface when it is cooled from below. (a) The change in the basic-state interfacial 
temperature due to a long-wave deformation of the interface, and ( b )  the resulting leading-order 
temperature perturbation. The long-dash line is the undisturbed free-surface position. 
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FIQURE 12. A schematic of the heat advection effect in the liquid layer. (a) The advection of fluid 
a t  the leading-order temperature by the basic-state velocity relative to the moving disturbance, 
and ( b )  the first-order temperature perturbations produced by the advection shown in ( a )  and the 
film flow and the induced interfacial motion nroduced by the buoyancy force acting in the 
longitudinal direction. The long-dash line is the undisturbed free-surface position. 

from near the crest to the warmer regions of the layer near the node point. This has 
a cooling effect on the fluid to the left of the crest. Similarly, to the right of the crest, 
horizontal motion advects warmer fluid from near the node point towards the cooler 
fluid near the crest. This has a heating effect on the fluid to the right of the crest. The 
magnitude of this advection effect is measured by the Prandtl number. If Pr is small, 
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heat diffusion dominates and advection effects are not noticeable. However, for large 
Prandtl numbers, heat advection is important and the temperature distribution in 
the layer is significantly modified. Spccifically, the temperature decreases to the left 
of the crest and increases to the right. 

We note that this advection process is composed of advection by the horizontal 
basic-state velocity and an unsteady term due to the motmion of the disturbance. The 
unsteady term has the larger effect. Thus, we can describe the modification of the 
temperature field in another way. Consider a disturbance to the interface and a fixed 
point in the layer just ahead of the crest of the disturbance. As the disturbance moves 
over the fixed point, the temperature in the layer must decrease in order to follow the 
conduction-dominated temperature solution. However, the heat capacity of the 
liquid represented by the unsteady term prevents the fluid temperature a t  this point 
from decreasing fast enough. Thus, the temperature of the fluid in front of the crest 
of the disturbance is slightly higher than the conductive solution would indicate. 
Likewise, just behind the crest, the opposite happens and the temperature is slightly 
cooler than expected. 

Now consider the effect of this modified temperature distribution on the buoyancy 
forces in the layer. To the left of the crest the fluid is colder and therefore more dense 
than before. It will tend to move downstream under the longitudinal component of 
gravity, gsin (p). Just  to the right of the crest, the fluid is warmer and therefore less 
dense than before so it tends to  move upstream. The net result is a flow of fluid 
towards the crest and away from the troughs of the disturbance as indicated in figure 
12 (b ) .  A simple conservation-of-mass analysis then shows that the deflection of the 
interface must increase. Thus, longitudinal buoyancy has a dcstabilizing effect. 

The influence of this temperature field is also felt through the direct expansion of 
the liquid as described in (2.10d). When the disturbance moves over a fixed point in 
the layer, the temperature field decreases continually from the node point in front of 
the disturbance crest to the node point behind. A temperature decrease causes the 
fluid to contract. The response of the interface is a decrease in the elevation of the 
disturbance. In  fact, this stabilizing effect dominates the destabilizing effect of 
longitudinal buoyancy and so cooling a liquid layer with an isothermal top surface 
from below is stabilizing to long waves. 

When the top surface of the layer is insulated, a disturbance to the interface has 
no leading-order effect on the temperature field; see ( 2 . 7 ~ ) .  Since the basic-state heat 
flux through the layer must remain fixed, the temperature in the bulk of the layer 
does not change when the interface is deformed. With T, = 0 in this case, the 
dominant advection term in ( 2 . 8 d )  is due to the normal velocity disturbance in the 
layer. The mechanism for its effect is shown in figure 13. To the left of the disturbance 
crest the normal disturbance velocity in the layer is in the - y-direction. It advects 
fluid with a higher basic-state temperature to regions where it is colder. This has a 
heating effect on the fluid and so the temperature of the layer to the left of the crest 
is increased. Likewise, the normal disturbance velocity to the right of the disturbance 
crest has a cooling effect and the temperature there is lowered. This temperature 
perturbation modifies the density of the fluid so that longitudinal buoyancy produces 
a stabilizing flow away from the disturbance crest as shown in figure 13(b). As the 
disturbance moves over a fixed point in the layer, the disturbance temperature is 
such that the temperature increases from the node point in front of the crest to the 
node point behind the crest. The temperature increase directly expands the liquid 
and results in an increase in the deflection of the interface. This destabilizing effect 
dominates the stabilizing effect of longitudinal buoyancy and so the long-wave 
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FIGURE 13. A schematic of the heat advection effect in the liquid layer. (a) The advection of fluid 
at the basic-state temperature by the normal perturbation velocity, and (b) the first-order 
temperature perturbations produced by the advection shown in (a) and the film flow and the 
induced interfacial motion produced by the buoyancy force acting in the longitudinal direction. 
The long-dash line is the undisturbed free-surface position. 

instability of a liquid layer with an insulated top surface is further destabilizing by 
cooling from below. 

The relative effects of all the processes discussed above can be shown by 
considering the thermal term in the imaginary part of the eigenvalue given by 
(2.11 b ) .  For an isothermal top surface (43 = l ) ,  this thermal term is 

(5.4) 

The first term on the right-hand side is the destabilizing effect of longitudinal 
buoyancy forces and the second is the stabilizing effect of direct liquid expansion. In 
the buoyancy term, we have 

5 19 
8064 4032 

iEPe- = iEPe 
1152 (5.5) 

The first term on the right-hand side is the contribution to the destabilizing effect of 
longitudinal buoyancy from longitudinal advection in the T,-disturbance equation 
and the second term is the stabilizing contribution from normal advection. Likewise 
for the expansion term, 

Considering the expansion term differently, we find 

The first term on the right-hand side is the contribution to the stabilizing effect of 
direct liquid expansion due to unsteady effects as the T,-temperature field moves 
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downstream with the disturbance. The second term is the destabilizing contribution 
from horizontal advection of the density in the liquid as modified by the q- 
temperature field. 

For an insulated top surface (9? = 0), the thermal term in the imaginary part of the 
eigenvalue is 

a p e -  17 = iEPe 31 --+-} 223 
1260 { 1008 5040 ' 

The first term on the right-hand side is the stabilizing effect of buoyancy forces and 
the second is the destabilizing effect of direct liquid expansion. Both of these effects 
arise from a temperature field caused by normal advection of the fluid since there is 
no O(1) temperature perturbation to be advected by the horizontal motion in the 
layer. Considering the expansion term, we find 

(5.9) 

The first term on the right-hand side is the contribution to the destabilizing effect of 
direct liquid expansion due to unsteady effects as the TI-temperature field moves 
downstream with the disturbance. The second term is the stabilizing contribution 
from horizontal advection of the density in the liquid as modified by the q- 
temperature field. 

Our discussion up to this point has centred on the forces that drive the flows 
responsible for the unstable motion of the interface. It is also appropriate to 
comment on how the energy for the instability is fed to the long-wave disturbance. 
The sources of disturbance energy in this problem can be found by using a 
disturbance energy analysis as shown by Kelly et al. (1989) for the isothermal liquid 
layer. A full analysis of this kind is rather complex and will not be discussed in this 
work. However, we have noted that the thermal part of the long-wave instability is 
seen in the layer even when the Reynolds number is zero, as shown in (3.4). In  this 
limit, a disturbance energy analysis shows that the rate of increase in the disturbance 
energy is due to the increase in thermal energy alone. The rate of increase in thermal 
energy can be obtained by multiplying the disturbance energy equation by T' and 
integrating over the depth of the layer and over one wavelength h of the disturbance. 
The resulting equation for a layer with the isothermal top surface is 

- d& = -[vpFvv'T'-Pe-l Fy(l) Tu(y = l )y ' dx -g ,  
dt (5.10) 

where 6 = s , ( + p P )  is the total thermal energy of the disturbance, 9 = 
Pe-I s v ( T j z  + q2) is the amount of thermal energy dissipation, and sv is the required 
volume integral. 

The first two terms on the right-hand side of (5.10) measure the production of 
disturbance energy. The first term represents the transfer of thermal energy from the 
basic-state temperature field to the disturbance through advection by the normal 
velocity in the layer. The second term shows how energy is transferred to the 
disturbance through a perturbation heat flux that develops a t  the interface due to its 
deformation and the presence of a basic-state heat flux. We can easily see that the 
first energy production term is O(a) in the long-wave limit, and that the second is 
O(1) .  Thus, the perturbation heat flux a t  the interface is the primary source of 
disturbance energy for the long-wave instability in a liquid layer with an isothermal 
top surface. When the top surface is insulating, the second production term is zero 
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and so the only process that delivers energy to any disturbance is advection by the 
normal velocity in the liquid layer. In both cases, the energy reservoir for the 
disturbance is the thermal energy contained in the basic-state thermal field. 

6. Conclusions 
We have examined the effect of heating or cooling on the interfacial long-wave 

instability of a liquid layer flowing down a rigid inclined plane. The growth rate of 
long-wave disturbances aci is the result of three distinct effects as shown in (2.11b). 
The first two terms in this equation are the imaginary part of the eigenvalue for an 
isothermal liquid layer and were first derived by Benjamin (1957) and Yih (1963). 
The first term is the destabilizing effect of the inertia of the liquid on the disturbed 
viscous flow in the layer as explained by Smith (1990). The second term represents 
the stabilizing effect of the hydrostatic pressure in the layer as it increases with the 
interfacial deformation. 

The contribution of the present work has been to identify and explain the third 
term in (2.11 b) .  This term is composed of contributions from longitudinal buoyancy 
forces and from direct liquid expansion effects. It is measured by the expansion 
number E ,  which is usually small. Previous work on this problem has usually either 
ignored or neglected these effects because of this. However, we have shown that these 
effects are truly negligible only when E P r  is small. In this case, the stability of a 
heated or cooled liquid layer to long waves is essentially the same as an isothermal 
layer. However, when EPr  = O(l) ,  i.e. for large-Prandtl-number fluids, these effects 
are not negligible because advection will modify the temperature distribution enough 
for buoyancy and expansion effects to appear. 

The behaviour of the layer as a result of these thermal effects is somewhat 
surprising. When the top surface is almost isothermal, cooling the layer from below 
is stabilizing to long waves and heating from below is destabilizing. This is the 
behaviour one might expect. However, when the top surface is almost insulating, 
cooling the layer from below is destabilizing to long waves and heating from below is 
stabilizing. 

When the layer is stabilized to long waves, an analysis of the system at finite 
wavenumbers is needed in order to predict the critical mode of instability in the 
layer. The results of this analysis showed that long waves are preferred when the 
layer is heated from below with an almost isothermal top surface and when it is 
cooled from below with an almost insulating top surface. The critical wavenumber 
for a layer cooled from below with an almost isothermal top surface is finite, but still 
small. The critical Reynolds number is only different from the isothermal result by 
an O(E) amount. The critical wavenumber for a layer heated from below with an 
almost insulating top surface is also finite and small. However, the critical Reynolds 
number can be much less than that of the isothermal layer. In fact as Pr+ 00, 

R, N Pr-l. 
The physical mechanisms for the effect of longitudinal buoyancy and of direct 

liquid expansion on long waves were explained using arguments similar to those 
described by Smith (1990) for the isothermal problem. Consider a liquid layer that 
is cooled from below and whose top surface is almost isothermal. The temperature of 
the liquid in this layer is determined mainly by conduction. If the interface is 
deformed by a long-wave disturbance, the temperature in the bulk of the liquid 
decreases as the thickness of the layer increases. The disturbance propagates 
downstream just as in the isothermal case, and when the deflection of the interface 
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increases over a point in the layer, the temperature in the bulk of the layer should 
decrease. However, the heat capacity of the fluid prevents it from changing 
temperature as fast as the interface changes height. The result is that the 
temperature downstream of the crest of the disturbance is slightly higher than 
expected from conduction alone, while upstream of the crest of the disturbance i t  is 
slightly lower than expected. The longitudinal buoyancy force acts on the slightly 
warmer fluid downstream of the crest and drives a flow towards the crest of the 
disturbance. Upstream of the crest, buoyancy acts on the slightly colder fluid and 
also drives a flow towards the crest of the disturbance. The effect of these two flows 
is destabilizing since they tend to increase the deflection of the interface. 

The effect of direct liquid expansion is also felt through the action of this slightly 
perturbed temperature field. As the disturbance moves over a fixed point in the 
layer, the perturbation of the conduction temperature field is seen as a continual 
decrease in the temperature as the crest of the disturbance moves by. This decrease 
in temperature decreases the volume of the liquid which stabilizes the disturbance 
because it tends to decrease the deflection of the interface. This effect is larger than 
the destabilizing effect of buoyancy and so the overall influence of cooling is 
stabilizing. 

If we consider the top surface of the layer to be insulating, then the temperature 
field in the layer is less affected by a disturbance in the thickncss of the layer because 
the slope of the temperature profile in the layer must remain constant. However, as 
a disturbance crest moves along the interface, there is a slight normal motion in the 
bulk liquid that is towards the interface downstream of the crest and away from the 
interface upstream of the crest. As the fluid in the layer moves towards the interface, 
it brings colder fluid from below towards tzhe surface. This has a cooling effect and so 
the fluid downstream of the disturbance crest is slightly colder than expected from 
conduction alone. Likewise, the fluid upstream of the crest brings hotter fluid from 
near the surface down into the colder fluid near the bottom and so the temperature 
upstream of the crest is slightly hotter than expected from conduction alone. 
Longitudinal buoyancy forces and direct liquid expansion then act on this perturbed 
temperature field to  produce a st,abilizing and a destabilizing flow perturbation 
respectively. The direct expansion effect is greater and so cooling from below is 
destabilizing when the top surface is insulating. 

The physical mechanisms that we have described in this work also explain why the 
thermal effects of heating or cooling influence the long-wave instability of a liquid 
layer only when the liquid has a large Prandtl number. These thermal effects are the 
result of temperature changes in the layer, due to unsteadiness or normal advection, 
that are proportional to the Prandtl number. These temperature changes then 
produce small changes in the liquid’s buoyancy that are proportional to the 
expansion number. Since the expansion number is small, thermal effects are 
important only when the Prandtl number is large. 

Earlier research on this problem has either neglected or ignored longitudinal 
buoyancy because of the smallness of the expansion number. Recently, Yih (1986) 
considered the flow in an inclined channel containing two liquid layers that have 
different thermal conductivities, but in which all other fluid properties are identical. 
When the channel is cooled from below and heated from above, a long-wave 
instability of the interface between the liquids is possible when the less conductive 
liquid is above the more conductive liquid. Yih says that the driving force for this 
instability is longitudinal buoyancy and that this force is produced because of 
temperature perturbations caused by the difference in the thermal conductivities of 
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the two liquids. A careful examination of Yih’s analysis shows that the basic 
mechanism for his instability is the same as the mechanism for longitudinal 
buoyancy effects that we have described in this work. Thus, a multilayered system 
with thermal conductivity stratification is not the only system that displays this 
kind of long-wave instability. 

There is also a close similarity between the major source of thermal disturbance 
energy production for the interfacial instability in a stratified channel and in a single 
liquid layer with an isothermal top surface. I n  each case, energy is transferred from 
the basic-state temperature field to the long-wave disturbance through a per- 
turbation heat flux that develops at  the interface. The processes that form the 
perturbation heat flux are slightly different, however, because different thermal 
boundary conditions are used on the interface in each system. 

There are two other differences between the interfacial instability in the single 
liquid layer and in the two-layer channel flow. First, the basic state in the channel 
flow does not have a jump in the curvature of the basic-state velocity profile a t  the 
interface. Therefore, an interfacial deformation does not induce SL disturbance shear 
stress on the interface as i t  does for the flow in a single liquid layer on an inclined 
plane. The basic-state velocity and the leading-order velocity disturbance in the 
channel flow are due to the small longitudinal buoyancy effects that are negligible in 
the single liquid layer. Second, there is a lubrication pressure that appears in the 
channel flow system because of its confined geometry. Smith (1989) describes this 
pressure as it appears in a vertical, density-stratified, two-phase pipe flow. In  fact, 
the lubrication pressure is responsible for the very complicated behaviour of the 
instability in the pipe flow problem as the thickness of the two fluids change. Thus, 
we should expect the behaviour of the instability in the channel flow system to 
become even more complicated as the two layers change in thickness. 

Smith (1990) proposed that the interfacial long-wave instability seen in single 
inclined isothermal liquid layers and in multiple inclined liquid layers with 
stratification in density or viscosity could be classified into two large groups. The 
basic mechanism of the instability for each group was then studied using an 
appropriate single-layer model. In  this same spirit, we note the similarities between 
the instability mechanism and the disturbance energy production mechanism in both 
the single-layer flow and the channel flow of Yih (1986). Therefore, the single-layer 
model presented in this paper seems to be the simplest system that exhibits all of the 
basic effects of heating and cooling on the long-wave instability. 

One further comment on Yih’s (1986) work is in order. We have shown that the 
thermal component of the long-wave instability in a single, inclined liquid layer is 
primarily the result of unstable fluid motions caused by direct liquid expansion. The 
longitudinal buoyancy forces that appear in the layer always oppose these motions. 
When Yih posed the two-layer channel flow problem, he used the incompressible 
form of the conservation of mass equation, and so he neglected the direct expansion 
of the liquid. If the present work is any guide, one should expect significantly 
different results in the channel flow when these direct liquid expansion effects are 
included. Such an investigation remains for the future. 

Finally, long-wave instabilities have been found by Renardy (1986) in a two-layer 
system stratified by thermal conductivity and by Benguria & Depassier (1987) in a 
layer with a free, isothermal lower surface and a free, insulated upper surface. The 
main difference with the present work is that the previous layers were horizontal. 
The mechanism for this instability must be due to the effects of gravity in the vertical 
direction, and so i t  is not the same instability as the one seen in this work or in the 
work of Yih (1986). 
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